If it's not what You are looking for type in the equation solver your own equation and let us solve it.
15x^2-14-29x=0
a = 15; b = -29; c = -14;
Δ = b2-4ac
Δ = -292-4·15·(-14)
Δ = 1681
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{1681}=41$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-29)-41}{2*15}=\frac{-12}{30} =-2/5 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-29)+41}{2*15}=\frac{70}{30} =2+1/3 $
| 19.2m=17.6m-432 | | x+x+3+2x=51 | | M=-3/4,b=-2 | | 36n+48=42n+12 | | 12-13j=-13j+12 | | -3x-2(x+4)=-6-5 | | _19-13j+13=-6-13j | | -5/6k=12.88 | | -6s+4=14-7s-2 | | -12(x-120)=-9(1+7x) | | 5x-1=2-4x | | (3x+2)-(x+7)=35 | | 2w(3-2)+w-6=10w-3+4+w(2+1) | | -19−13j+13=-6−13j | | 4(2r-8)=1/7(49r+70 | | -4-12p=-11-12p+7 | | 6s+40=142 | | -4−12p=-11−12p+7 | | Y=3/5x+5 | | 4(2r-8)=1/7(49r+7-) | | -125m-100m+39,000=40,000-175m | | 9+6r=3(2r+3) | | 10h-6=44 | | 7g+6=4+16 | | 17g-2-14=17g-16 | | Y/2=x/x+10 | | 17g−2−14=17g−16 | | 4.9=9.7t | | 12=2(v-44) | | 3y*1/3y=1,y=0 | | 200m-125m+48,750=51,250-175m | | 55x=55 |